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a b s t r a c t

Most chromatographic processes involve separation of two or more species, so development of a simple,
accurate multicomponent chromatographic model can be valuable for improving process efficiency and
yield. We consider the case of breakthrough chromatography, which has been considered in great depth
for single-component modeling but to a much more limited degree for multicomponent breakthrough.
We use the shrinking core model, which provides a reasonable approximation of particle uptake for pro-
teins under strong binding conditions. Analytical column solutions for single-component systems are
extended here to predict binary breakthrough chromatographic behavior for conditions under which the
external transport resistance is negligible. Analytical results for the location and profile of displacement
effects and expected breakthrough curves are derived for limiting cases. More generally, straightforward
numerical results have also been obtained through simultaneous solution of a set of simple ordinary dif-
vershoot
onstant pattern

ferential equations. Exploration of the model parameter space yields results consistent with theoretical
expectations. Additionally, both analytical and numerical predictions compare favorably with experi-
mental column breakthrough data for lysozyme–cytochrome c mixtures on the strong cation exchanger
SP Sepharose FF. Especially significant is the ability of the model to predict experimentally observed dis-
placement profiles of the more weakly adsorbed species (in this case cytochrome c). The ability to model

sing s
displacement behavior u
over current methods.

. Introduction

Within the non-linear chromatography regime, much attention
as been devoted to both analytical and numerical solution meth-
ds for modeling single-component processes, but significantly less
uccess has been achieved in deriving efficient solution methods for
odels of multicomponent separations. In particular, for modeling

hromatography of proteins and other strongly adsorbed molecular
pecies, the general principles and phenomena involved in binary
reakthrough and displacement are well known, but appropriate
echanistic descriptions are not always compatible with efficient

olution methods. Here we describe such a solution method for col-
mn loading via an extension to binary systems of the well-known
hrinking core model of uptake behavior.

For breakthrough experiments, in which the column is loaded

o its equilibrium capacity with a single or multiple species, the
ey to an efficient solution for single-component analysis is often
he constant-pattern limit, in which a shock profile that devel-
ps within a column eventually becomes invariant with time
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imple analytical and numerical techniques is a significant improvement
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[1,2]. A number of analytical solutions and approximations have
been developed, assuming a variety of combinations of isotherms
and limiting mass transfer effects. Single-component analytical
solutions have been derived for irreversible isotherms assuming
behavior limited by adsorption kinetics [1] or solid (homoge-
neous) diffusion [3,4]. Additional analytical solutions have been
derived assuming a Langmuir isotherm and solid [3,5] and liquid
[3,6] linear driving force models. Analytical approximations and
representative numerical solutions have also been obtained for
both solid- and pore-diffusion cases assuming Langmuir isotherms
[7]. Based on this work, Cooper and Liberman [8] developed a
complete analytical column solution, not dependent on a constant-
pattern assumption but assuming a rectangular isotherm and
pore-diffusion controlled uptake behavior, resulting in shrinking-
core particle saturation profiles similar to those illustrated in Fig. 1.
Additional analytical solutions include the Thomas model, which
assumes a second-order reaction kinetic model [9,10]. A more
inclusive model would require numerical solution of the general
rate model, which is computationally expensive [3].

Relatively few analytical solutions of multicomponent break-

through chromatography have been reported. The topic was intro-
duced by Glueckauf, who considered multicomponent equilibrium
behavior [11]. The existence of multicomponent constant-pattern
regions was proven by Cooney and Lightfoot [12], who went on to
solve analytically the solid-film linear driving force case [13], and
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http://www.sciencedirect.com/science/journal/00219673
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mailto:lenhoff@udel.edu
dx.doi.org/10.1016/j.chroma.2011.02.020


S.J. Traylor et al. / J. Chromatogr.

Fig. 1. Schematic of binary shrinking core uptake, adapted from [36]. The outer
shell corresponds to species A and the inner to species B. The fluid and solid phase
concentrations are represented by Ci and qi , respectively. Concentration profiles of
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ments at 280 nm and 405 nm.
pecies A are denoted by dashes and those of species B by solid lines. The superscript
denotes the bulk mobile phase concentration and the adsorbed concentration in
quilibrium with it.

ater solved in more detail a similar system assuming a multicom-
onent Langmuir isotherm [14]. A key assumption in many of these
odels involves deriving an analytical expression relating concen-

rations of multiple components in displacement regions and using
hese relationships to simplify isotherms to pseudo-binary form
14]. Similar analytical treatments of this type have been derived
or the solid-film [15] and both solid- and liquid-film [16,17] linear
riving force models.

The most comprehensive analytical treatment of multicompo-
ent chromatography is that of Rhee and Amundsen [18], which
ssumes a solid-film linear driving force and accounts for axial
ispersion effects using a h-transform solution approach [19–21].
hock wave thickness and propagation velocities are estimated
n this model, as well as limiting concentrations of each species
etween the shock layers [3,18]. The limitations of this model

nclude its mathematical complexity and its limitations on and
umping of intraparticle transport effects. A similar approach has
een applied to estimating shock layer thickness based on the
quilibrium-dispersive model and has been extended to investi-
ate the formation of displacement layer (concentration overshoot)
ffects [22]. A number of efforts to model breakthrough and dis-
lacement have resorted to numerical solutions of the general rate
odel assuming pore diffusion and a multicomponent isotherm

23–27], among others. A comprehensive summary of both analyt-
cal and numerical work in this area is available [28].

A weakness inherent to many of the existing multicomponent
onstant-pattern solutions is the lack of clearly defined existence
onditions for constant-pattern behavior, i.e., the column length
ecessary to attain the constant pattern. This topic has been con-
idered in some detail using analytical approximations within the
ramework of the linear driving force model [13,17] as well as
umerically and experimentally [29,30]. Without such guidance,
he constant-pattern assumption may be limited in its applicability
or predicting column behavior.

A useful limiting model can be developed from the assumption
f irreversible adsorption, which results in a rectangular isotherm

hat, when applied to pore diffusion-limited uptake, results in the
hrinking-core model [7,8]. These assumptions have been vali-
ated by confocal microscopy and other techniques for studying
he single-component uptake of proteins on ion-exchange resins
A 1218 (2011) 2222–2231 2223

under strongly binding conditions [31–35]. For multicomponent
systems under strongly binding conditions the isotherms may still
be near-rectangular, but competitive adsorption often appears to
indicate almost complete displacement of a less strongly bound
component by a more strongly bound one [36,37]. These results
suggest that under the observed conditions, assuming rectangu-
lar isotherms may be appropriate for describing multicomponent
column behavior. The adsorbed concentration of a more weakly
bound component will then depend partly on whether any of a
more strongly bound component is present to displace it com-
pletely or partially from the adsorbent. Here we use this approach
for binary systems, with component A more strongly bound than
component B; in some of the literature the alternative convention
is used in which species A is expected to bind more weakly than
and elute before species B [14,21,38].

Assumption of rectangular isotherms in a binary batch uptake
system allows application of the binary shrinking-core model,
which follows the standard theory [39–41] but includes modifi-
cation to account for displacement of B at the adsorption front for A
[36]. Fig. 1 illustrates uptake within a particle, with the outer shell
representing the displacing species A and the inner shell the dis-
placed species B. After the particle is saturated with B, displacement
continues to occur, and results in concentration overshoot effects
within the particle, represented in the lower right graph.

In order to develop a binary breakthrough model that is
both efficient and capable of accounting for strong binding and
displacement effects, we have extended the multicomponent
batch shrinking core model [36] to the column framework for
which a general single-component breakthrough solution was
developed by Cooper and Liberman [8]. The resulting approach
requires numerical integration in certain cases, but the structure
provided by the single-component solution makes this method
more efficient than a fully numerical solution, for which the
sharp fronts and consequent steep gradients present important
difficulties.

2. Materials and methods

2.1. Materials

All chemicals and proteins were obtained from Sigma (St.
Louis, MO) and used without further purification. Phosphate-
buffered saline (PBS) was prepared using 10 mM sodium phosphate
(19.9 mM ionic strength, I.S.) and adjusted to pH 7 using 1 M
hydrochloric acid or sodium hydroxide. All buffers were prepared
at room temperature (23 ± 2 ◦C) using deionized water from a Mil-
lipore Milli-Q system (>18.2 M� cm) and filtered with 0.22 �m
Gelman VacuCap bottle-top filters (Pall Corporation, Ann Arbor,
MI).

Chicken egg white lysozyme (LYS) (L6875, lot 093k1455 and
L6876, lot 051K7028) and cytochrome c (CYC) from bovine heart
(C3131, lot 083k7037 and C2037, lot 61K7018) were obtained from
Sigma with manufacturer-reported purities of 95% and 97%, respec-
tively. Protein solutions were prepared in the 0 mM NaCl PBS buffer,
filtered with 0.22 �m Millipore Millex-GV filters (Millipore Corpo-
ration, Bedford, MA), and stored at 4 ◦C. All protein solutions were
further filtered before use to remove possible aggregates formed
during preparation or storage. Protein concentrations were deter-
mined via spectrophotometry, with the relative amounts of both
proteins determined by using simultaneous absorbance measure-
The cation-exchange resin used was SP Sepharose FF (lots
297051 and 10020387), an agarose-based material (GE Healthcare,
Piscataway, NJ). Protein and resin behavior was compared between
lots to verify similarity.
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Fig. 2. Illustration of binary breakthrough behavior predicted by the shrinking core
model, as a function of dimensionless column position, N, and dimensionless time,
�. The upper and lower sets of lines correspond to the species A and B breakthrough
zones, respectively. The solid lines, labeled ˛i , represent the saturation boundaries
(R = 0) and the dashed lines the depletion boundaries (R = R ). The three cases for
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.2. Apparatus

A 0.35 mL Omnifit microbore glass chromatography column (P.J.
obert Associates, Inc., St. Louis, MO), 0.3 cm i.d. × 5.0 cm long, and
1.19 mL AP Minicolumn glass chromatography column (Waters
orporation, Milford, MA), 0.5 cm i.d. × 6.1 cm long, packed with SP
epharose FF particles was used to obtain frontal loading profiles
n an ÄKTA Explorer 100 (GE Healthcare). A sample pump P-960
as used to feed the protein solution.

.3. Methods

Adsorbent particles were washed three times with a 1.0 M
aOH solution or a 1.0 M NaCl solution. Helium was used to degas

he slurry prior to column packing with a high-salt buffer. The
lurry was gravity-packed in 1.0 M NaCl and subsequently flow
acked for 15 min at a superficial velocity of 610 cm/h in 1.0 M
aCl.

The UV response of the feed protein concentrations was deter-
ined by bypassing the column and monitoring the detector

esponse. The column was then equilibrated with 10 column vol-
mes of 0 mM NaCl PBS buffer, and the protein solution was

oaded directly onto the column using the sample pump while
he output was monitored. After each run was terminated, the
olumn was washed with 10 column volumes of 1.0 M NaCl
uffer.

. Theory

The single-component shrinking core column solution [4,7,8]
as derived in terms of two dimensionless independent variables,
dimensionless time � and a dimensionless column position N,

efined as

= 6DA
e (1 − ε)

�AR2
p

(
t − z

u

)
(1)

= 6DA
e

R2
p

1 − ε

ε

z

u
(2)

The dimensionless variables and parameters are based on those
ntroduced by Vermeulen [4] and by Hall et al. [7], but they have
een modified to maintain consistency with the notation of Martin
t al. [36], which simplifies the results. At the column entrance, the
imensionless time � simplifies to that used by Martin et al. For
he sake of brevity, key results from the derivation are presented
ere and additional details are made available as Supplementary

nformation.
It is useful to consider the qualitative form of the solution within

he (N, �) domain (Fig. 2). The binary shrinking-core solution for a
ingle particle [36] represents the column entrance behavior (N = 0)
n the left-hand ordinate of Fig. 2. Uptake occurs between the lines
ndicated, with the unlabeled zones representing saturation (upper
eft and center) or depletion regions (lower right). Initially, both
pecies A and B are adsorbed on the column at the same time, but as
ime passes, species B is both fed and displaced, and enough excess
accumulates to travel ahead of the species A front and create a

aturated region of adsorbed B, which is subsequently displaced
y A. The point beyond which these fronts diverge is labeled D.
s each species follows a rectangular isotherm, eventual constant
attern behavior is expected, resulting in uptake zones of constant
idth. One would not expect the presence of B to affect the uptake

rofile of A apart from possibly reducing its maximum adsorbed
oncentration, since A is the displacer.

Based on these observations, three major zones are expected:
he zone where both A and B are simultaneously being adsorbed
nd B displaced (region I); the zone where species B is adsorbed to
i i p

which uptake equations are derived correspond to the shaded regions of the graph.
The labeled points represent key results from the species B solution, including the
column inlet saturation time, point 0, and the binary divergence location, point D.

saturation but is being displaced by species A (region II); and the
zone where species B is being taken up independently of species
A (region III). Two of these labeled regions may be compared with
constant-pattern zones illustrated in Cooney and Strusi [14], with
region II corresponding to their zone II and region III corresponding
to their zone IV.

In the single-component case the variables Ci and qi repre-
sent the individual fluid and adsorbed concentrations, respectively.
Superscript F represents the feed concentration, specifically for
variables CF

i
and qF

i
, the feed concentration and the adsorbed con-

centration in equilibrium with the feed, respectively. In the binary
case, equilibrium adsorbed concentrations are represented by qF

ij
,

where i denotes the species of interest and j indicates the presence
of the other binary component.

Dimensionless fluid concentration variables are defined as
[4,7]:

Xi = Ci

CF
i

X̄i = Cb
i

CF
i

where the superscript b and the overbar on the mobile-phase con-
centration indicate bulk values, compared with local values within
a particle. Adsorbed concentrations are defined differently for the
two species, since A displaces B and is observed only with B present.
Additionally, the dimensionless parameter �i is defined similarly
to a quantity used by Hall et al. [7]:

YA = qA

qF
AB

ȲA = q̄A

qF
AB

�A = (1 − ε)
qF

AB

CF
A

YB = qB

qF
B

ȲB = q̄B

qF
B

�B = (1 − ε)
qF

B

CF
B

The overbar on the adsorbed concentration indicates a particle
volume-averaged value, rather than a local concentration as a func-

tion of radial position inside the particle. Based on these definitions,
� = (qF

BA/qF
B) is defined as the fraction of B remaining adsorbed after

displacement by A; � approaches a value of zero in the limit of
complete displacement.
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.1. Balance expressions

If axial dispersion is neglected, the chromatographic balance
quation [3] for each species may be written as a function of the
imensionless concentrations defined above as

∂X̄i

∂t
+ u

∂X̄i

∂z
= −�i

ε

∂Ȳi

∂t
(3)

ntroducing the dimensionless time and axial position variables
efined in Eqs. (1) and (2) results in the simplification of Eq. (3)
o

∂X̄i

∂N

)
�

= − �i

�A

(
∂Ȳi

∂�

)
N

(4)

Intraparticle transport is assumed to be by pore diffusion,
escribed by

∂Yi

∂t
= Di

e (1 − ε)
�ir2

∂

∂r

[
r2

(
∂Xi

∂r

)]
(5)

ecause of the assumed rectangular isotherm, the adsorbed con-
entration in the region RA ≤r ≤Rp is constant, as shown in Fig. 1,
ielding

dYA

dt
= dYB

dt
= 0 (6)

n the respective ranges for the two species. Using this result as the
eft-hand side of Eq. (5) and integrating the right-hand side twice

ithin the saturated zones for each respective species yields, with
pplication of the boundary condition Xi

∣∣
r=Ri

= 0 (see Fig. 1), the

ntraparticle concentration profiles

XA(r) = XA

∣∣
r=Rp

[(1/RA) − (1/r)]
[(1/RA) − (1/Rp)]

RA ≤ r ≤ Rp (7a)

B(r) =
{

XB
∣

r=RA

[(1/RB) − (1/r)]
[(1/RB) − (1/RA)]

, RA ≤ r ≤ Rp

XB
∣

r=RA
+ ( XB

∣
r=Rp

− XB
∣

r=RA
)

[(1/RA) − (1/r)]
[(1/RA) − (1/Rp)]

, RB ≤ r ≤ RA

(7b)

aking the mass balance around the intraparticle displacement
ront, RA, from Martin et al. [36] and substituting dimensionless
ariables results in

1
ˇ

XA

∣∣
r=Rp

+ XB

∣∣
r=Rp

= XB

∣∣
r=RA

[1/RB − 1/Rp]
[1/RB − 1/RA]

(8)

he parameter ˇ = �ADB
e /[�BDA

e (1 − �)] is similar to an analog in
artin et al., the only difference being that the expression here

ormalizes mobile-phase concentrations with respect to column
eed values rather than the infinite bath concentrations used in the
atch case [36].

The external transport resistance is neglected in this deriva-
ion, and thus the particle surface concentrations are assumed to
e equal to the bulk fluid concentrations, i.e. Xi

∣∣
r=Rp

= X̄i. Addition-

lly a dimensionless radial position is defined as �i = Ri/Rp, following
he convention of Cooper and Liberman [8], and differing from the
otation used by Martin et al. [36].

Particle uptake expressions are developed below for the three
ifferent regions that result from the shrinking-core assumption
Fig. 2), depending on which of the two species are present. The
rst two of these cases were considered in the batch situation [36]:

egion I, with 0 < �A < 1 and 0 < �B < 1, and region II, with 0 < �A < 1
nd �B = 0. Region III, �A = 1 and 0 < �B < 1, arises in the column
odel when the species B front completely overtakes the species A

ront and uptake occurs analogously to the single-component case
15].
A 1218 (2011) 2222–2231 2225

3.2. Region I: simultaneous uptake of A and B

In this region, uptake of both A and B is considered. The uptake
rates are calculated by taking the volume-average of Eq. (5) and
substituting the concentration gradients at the particle surface
obtained from Eq. (7) to yield

dȲA

dt
= 3DA

e (1 − ε)

�AR2
p

(
X̄A

(1/�A) − 1

)
(9a)

dȲB

dt
=3DB

e (1 − ε)

�BR2
p

(
X̄B − (1/ˇ)(1/�B − 1/�A)(X̄A)/[(1/�A) − 1]

(1/�B) − 1

)
(9b)

Scaling and substitution of the particle uptake expressions (Eq. (9))
into the chromatographic balances (Eq. (4)) provides relationships
for the mobile phase concentrations as a function of N at constant
�:

dX̄A

dN
= 1

2
X̄A

1 − (1/�A)
(10a)

dX̄B

dN
= 1

2
(1 − �)

�B

�A

[
X̄A + ˇX̄B

1 − (1/�B)
− X̄A

1 − (1/�A)

]
(10b)

Following the approach of Cooper and Liberman [8], the form
of the solution is simplified by expressing the fractional particle
uptakes in terms of the dimensionless uptake radii, �i:

ȲA = 1 − �3
A (11a)

ȲB = � + (1 − �)(1 − ȲA) − �3
B, (11b)

from which Eq. (9) yields

6�2
A

d�A

d�
= X̄A

1 − (1/�A)
(12a)

6�2
B

d�B

d�
= (1 − �)(X̄A + ˇX̄B)

1 − (1/�B)
(12b)

The boundary condition at the column entrance for breakthrough
chromatography, X̄A = X̄B = 1, gives rise to a time-dependent solu-
tion at the column entrance (N = 0) that is identical to the batch
uptake solutions presented by Martin et al. [36]:

� = 2�3
A − 3�2

A + 1 (13a)

�(1 − �)(1 + ˇ) = 2�3
B − 3�2

B + 1 (13b)

Axial concentration profiles may be obtained by simultaneously
solving Eq. (10) and a transformed form of Eq. (12) written with N
rather than � as the independent variable. Cooper and Liberman
[8] showed for the single-component case that this could be done
by introducing a dummy variable, generalized here for the binary
system as Gi(�i), where

GA(�A) = 2�3
A − 3�2

A + 1 (14a)

GB(�B) = 2�3
B − 3�2

B + 1
(1 − �)(1 + ˇ)

(14b)

This transformation is completed by defining the depletion
boundary N = ˇA(�), along which X̄A = ȲA = 0 and thus �A = 1 and
GA = 0, and introducing the analog N = ˇB(�) corresponding to X̄B =
ȲB = X̄A = 0, so that �B = �A = 1 and GB = GA = 0 are assumed (Fig. 2).
The transformation results in

2
∂�A

∂N
= 1

6
�A + �A + 1

�A
(15a)

∂�B

∂N
= 1 − �

6
�3

A(1 − (DB
e /DA

e )) + ˇ�B/�A�3
B−1−�ˇ�B/�A

�2
B − �B

(15b)
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r in terms of the dummy variables

∂GA

∂N
= �3

A − 1 (16a)

∂GB

∂N
= 1

1 + ˇ

[
�3

A

(
1 − DB

e

DA
e

)
+ ˇ

�B

�A
�3

B − 1 − �ˇ
�B

�A

]
(16b)

hich are suitable for numerical integration.
Just as there exists a line bounding the depletion region,

.e., where X̄i = Ȳi = 0, there is a line bounding the saturation
egion, where X̄i = Ȳi = 1. For species A, this line is represented by
= ˛A(�) (Fig. 2), and X̄A = ȲA = 1 means that �A = 0 and GA = 1. For

pecies A, Cooper and Liberman’s single-component result [8] is
btained, resulting in

= � − 1 (17)

ith the region beyond (� ≥ 1) representing the constant pattern
egion, in which the breakthrough profile of species A is fully devel-
ped and does not change as the front moves along the column.

A similar procedure is followed to obtain the saturation region
oundary for species B. Along N = ˛B(�), the relations �B = 0 and
B = 1 are satisfied, resulting in

d�

dN
= 1

X̄A + ˇX̄B

[(
DB

e

DA
e

− 1

)
�3

A + 1 + �ˇ
�B

�A

]
(18)

Apart from differences in the definitions of dimensionless vari-
bles, the species A equations mirror Cooper and Liberman’s
ingle-component results [8] and allow analytical determination
f species A profiles throughout the constant-pattern region. The
olution derived for B may be obtained in region I by numerically
ntegrating the coupled ordinary differential expressions, Eqs. (10)
nd (16), using Eq. (13) as a boundary condition at the column
ntrance (N = 0).

.3. Region II: uptake of A into a particle saturated with B

In this region, uptake of A results in displacement of B, but
ecause there is no residual capacity for B near the center of the par-
icle, the equations for B must be modified. The previously derived
ptake expressions for A remain the same. As before, the time
erivative for uptake of B (Eq. (11)) is written as

�2
B

d�B

dt
= −(1 − �)

dȲA

dt
− dȲB

dt
(19)

ut the fractional uptake derivatives (Eq. (9)) are much simpler as

result of there being only displacement of B without any uptake.
s a result the terms on the right-hand side cancel to give

�2
B

d�B

d�
= −(1 − �)

X̄A

(1/�A) − 1
+ 1

ˇ

DB
e �A

DA
e �B

X̄A

(1/�A) − 1
= 0 (20)

able 1
quations defining uptake behavior of each species in each of the three regions described

Derivative Region I

dX̄A
dN

= 1
2

X̄A
1−(1/�A)

∂�A
∂N

= 1
6

�2
A

+�A+1

�A

∂GA
∂N

= �3
A

− 1

dX̄B
dN

= 1
2 (1 − �) �B

�A

[
X̄A+ˇX̄B
1−(1/�B ) − X̄A

1−(1/�A)

]
∂�B
∂N

= 1−�
6

�3
A

(1−(DB
e /DA

e ))+ˇ(�B/�A)�3
B
−1−�ˇ(�B/�A)

�2
B
−�B

∂GB
∂N

= 1
1+ˇ

[
�3

A

(
1 − DB

e

DA
e

)
+ ˇ �B

�A
�3

B
− 1 − �ˇ �B

�A

]

A 1218 (2011) 2222–2231

confirming the invariance of �B expected for particles already sat-
urated with B. Transforming to the dummy variable GB(�) yields

d�B

dN
= dGB

dN
= 0 (21)

The derivative of the mobile-phase concentration in this region
is non-zero as a result of displacement:

dX̄B

dN
= −1

2
(1 − �)

�B

�A

X̄A

1 − (1/�A)
(22)

3.4. Region III: uptake of B

This case covers the eventuality of single-component uptake of
species B after it overtakes A. Single-component linear driving force
solutions for this profile have been derived previously [14,15]; the
single-component shrinking-core mechanism is applied here.

The fractional uptake derivative in Equation 12b is modified, in
this case due to the absence of A, resulting in

6�2
B

d�B

d�
= −DB

e �A

DA
e �B

X̄B

(1/�B) − 1
(23)

Substitution into the chromatographic balance (Eq. (4)) results
in

dX̄B

dN
= 1

2
DB

e

DA
e

X̄B

1 − (1/�B)
(24)

Following the same procedure as in the derivation of Eqs. (15)
and (16), transformation of the derivative in Eq. (23) yields

∂�B

∂N
= 1

6
DB

e

DA
e

�2
B + �B + 1

�B
(25)

or in terms of the dummy variable

∂GB

∂N
= ˇ

1 + ˇ

�B

�A
(�3

B − 1) (26)

Finally, expressing the saturation boundary in terms of
N = ˛B(�) results in a boundary given by

d�

dN
= 1

X̄B

�B

�A
(27)

3.5. Analytical results

The derivation above was applied to each uptake regime in Fig. 2
and results in the complete specification of column behavior pre-
sented in Table 1. Based on these equations, column behavior may
be predicted using numerical or analytical techniques. Analytical

results have been obtained for simplified limiting cases of these
equations, while numerical results may be obtained for all cases.
The equations for GA and �A are restatements of the same equation,
with �A being preferable for analytical solution techniques and GA
for the numerical methods discussed later.

in Fig. 2. Derivatives of all variables in the undefined regions of the plot are zero.

Region II Region III

1
2

X̄A
1−(1/�A) 0

1
6

�2
A

+�A+1

�A
0

�3
A

− 1 0

− 1
2 (1 − �) �B

�A

X̄A
1−(1/�A)

1
2

DB
e

DA
e

X̄B
1−(1/�B )

0 1
6

DB
e

DA
e

�2
B
+�B+1

�B

0 − ˇ
1+ˇ

�B
�A
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Analytical constant-pattern solutions for species A are consid-
red first. As is apparent from the equations, the behavior of species
is completely independent of the presence of species B, so the

ntegrated results for A always apply. As explained by Cooper and
iberman, the constant-pattern (� ≥ 1) solution for species A may
e derived by integrating Eq. (15) using the N = ˛A(�) line in Eq.
17) as a limit of integration, resulting in

− � + 1 = 	√
3

+ 3 ln(�2
A + �A + 1) − 2

√
3 tan−1

(
2�A + 1√

3

)
(28)

result differing only in the definitions of the independent vari-
bles from that of Cooper and Liberman [8]. This result is intuitively
xpected due to the stronger binding of species A and the absence
f kinetic limitations on displacement. However, the presence of B
s expected to decrease the maximum adsorbed concentration of A,
n effect that is completely accounted for by basing this model on
he adsorbed concentration of species A in the presence of B (qF

AB).
hese analytical expressions govern the behavior of A through the
emainder of this treatment. As would be expected, X̄A = ȲA in the
onstant-pattern region [8,12].

An analogous analytical result may be obtained for species B in
egion III beyond point D, which denotes the divergence of uptake
ones for species A and B. Unlike species A, however, no universal
nalytical result exists for the N = ˛B(�) line, which is necessary for
he completion of the integral defining the analytical solution. A
imited result valid in region III may, however, be obtained. Since
pecies A is absent in this region and the species B concentration is
t its maximum due to displacement in region II, Eq. (18) simplifies
o

d�

dN
= �B

�A

1

X̄max
B

(29)

valuation of Eq. (29) requires the maximum concentration of B in
he mobile phase to be obtained. This result may easily be derived
rom the relationships above or from equilibrium displacement
heory, where 
q̄A/
Cb

A = 
q̄B/
Cb
B [2,13,18]. Both approaches

re discussed further in Supplementary Material. In dimensionless
orm, the result is

¯ B = �B

�A
(1 − �)(1 − X̄A) + 1 (30)

r in the limit where species A is absent

¯ max
B = �B

�A
(1 − �) + 1 (31)

ubstitution of Eq. (31) into Eq. (29) allows evaluation of the
= ˛B(�) line in region III, given the existence of point D. Spec-

fication of this line then allows integration of Eq. (25), resulting
n

DB
e

DA
e

[
N −

(
1 − � + �A

�B

)
(� − �D) − ND

]
= 	√

3
+ 3 ln(�2

B + �B + 1)

− 2
√

3 tan−1
(

2�B + 1√
3

)
(32)

sing the definitions of the dimensionless variables N and �
ogether with ideal chromatography theory to define the equilib-
ium column saturation trajectory gives

DB
e

DA
e

[
ND −

(
1 − � + �A

�B

)
�D

]
= −1 (33)

hich allows Eq. (32) to be simplified to
DB
e

DA
e

[
N −

(
1 − � + �A

�B

)
�

]
+ 1 = 	√

3
+ 3 ln(�2

B + �B + 1)

−2
√

3 tan−1
(

2�B + 1√
3

)
(34)
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This result allows �B to be calculated throughout region III, with
the stationary- and mobile-phase concentrations following from
Eq. (11) and

X̄B

X̄max
B

= ȲB (35)

respectively. From these results, the concentration of B may be
determined analytically throughout regions II and III, and addition-
ally in the species B maximum overshoot zone between regions II
and III.

The existence of the constant pattern solution for species B in
region III (Eq. (34)) and its coincidence with equilibrium chro-
matography behavior appears not to be a general result, but it
applies under certain isotherm conditions. A more thorough con-
sideration of similar behavior in the linear driving force case is
undertaken by Cooney and Strusi [14].

An additional analytical result of interest is obtained when the
effective diffusivities of the two species are equal, in which case
the N = ˛B(�) line (Eq. (29)) becomes valid over the entire column.
Integrating Eq. (29) and evaluating the column entrance condition
from Eq. (13) gives

� = N + 1
1 − � + (�A/�B)

(36)

Apart from the equal-diffusivity case, the analytical solutions,
taken together, span a significant fraction of the solution domain,
obviating the need for numerical solutions. Analytical solutions are
valid for all constant-pattern column regions, which are defined
for species A as all � ≥ 1 and for species B as � ≥ �D. In practice,
however, evaluation of the divergence point �D can be a challenge,
especially if it lies within the non-constant pattern region of species
A (0 < � < 1).

In the constant-pattern region of species A, the divergence
point may be easily obtained from the results presented. Analyt-
ical expressions are known for the �B = 0 (Eq. (34) with �B = 0) and
the �A = 1 (Eq. (28) with �A = 1) lines. Simple algebra allows the
intersection point to be calculated as

�D = (DA
e /DB

e ) − (	/
√

3) + 3 ln(3) − 1
(�A/�B) − �

ND = (DA
e /DB

e ) + ((−	/
√

3) + 3 ln(3) − 1)(1 + (�A/�B) − �)
(�A/�B) − �

(37)

which because of the constraint to the species A constant pattern
region (� ≥ 1), applies for

�A

�B
− � − DA

e

DB
e

≤ − 	√
3

+ 3 ln(3) − 1 (38)

Fig. 3 illustrates this result graphically, where the constant-�
lines correspond to �D = 1, the limit of the constant pattern region
for species A. Above each line, Eq. (37) gives �D and the analytical
solution for species B (Eq. (34)) is defined for all � ≥ �D. Below
each line, Eq. (37) yields a physically meaningless result, and the
analytical solution for species B is defined for the entire species A
constant pattern region (� ≥ 1).

A final restriction is imposed on both the analytical and
numerical solutions by the times required for the two species to
saturate a single particle under batch uptake conditions. If the
saturation time required for species B is greater than that for
species A (� = 1), displacement cannot occur because the species
A front is adsorbing ahead of B. Using Eq. (13) to define this

condition and simplifying yields an existence condition for the
shrinking-core solution:

� ≤ �A

�B

DB
e

DA
e

(39)
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Fig. 3. Graphical representation of analytical solution restrictions defined in Eq.
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Fig. 4. Normalized mobile-phase concentration of B as a function of dimensionless
time (�) and dimensionless axial column position (N). Solid lines indicate concen-
tration profiles along the length of the column at fixed dimensionless times. The flat
38). Each line represents the parameter values for which �D = 1. Above each line
he divergence point is defined analytically (�D > 1). Below each line the divergence
oint is undefined analytically (�D < 1). Shown for illustration is the equal diffusivity

ine, for which the species B trajectory is entirely defined analytically.

For this condition switching the labels of species A and B would
ield an appropriate description of behavior, as B would then be
isplacing A. This restriction is comparable to the ranking of bind-

ng strengths of various components in analysis of displacement
n order to determine which species displace and are displaced
13,21,38].

.6. Numerical solution

Numerical solutions were obtained using the ordinary differ-
ntial equation suite in Matlab, specifically the function ode115.
quations were integrated with respect to N at a number of discrete

values using the time-dependent column inlet conditions, equal
o the batch uptake results [36], as a boundary condition. Numerical
ontinuity was assumed between different uptake regimes within
he column. The simulation parameters were chosen to match real
xperimental or representative theoretical column conditions. Pre-
icted chromatograms were obtained by plotting time points at a
xed simulated dimensionless axial position N.

Solutions were obtained by first calculating the time-dependent
oundary conditions along the �-axis of Fig. 2. Lines N = ˛i(�),
i = 0, were calculated based on the analytical solution profile for
(Eq. (28)), as these lines are necessary to determine the bound-

ries between solution regions. Appropriate coupled ODEs listed
n Table 1 for mobile and stationary phase concentrations of each
pecies were then integrated with respect to N, starting from the
olumn entrance conditions given by Eq. (13). Integration was per-
ormed in terms of Gi rather than �i because the Gi expressions are
ontinuous until the end of the region of integration whereas the
i expressions are discontinuous at the beginning of the region of

ntegration.
Equations for integration were selected based on the solution

egions illustrated in Fig. 2 and adjusted when different solution
egions were encountered. The first adjustment is encountered
hen crossing one of the two N = ˛i(�), �i = 0, lines defined above,
nd the second is when crossing the particle depletion boundaries,
r N = ˇi(�), �i = 1. When such a trigger was reached, integration
f the set of equations describing that region was terminated, and
new integration was begun using the set of equations describing

he new region and the final values of the previous integration as
triangular region at the top of the plot indicates the region of maximum displace-
ment (X̄max

B
). Constant-pattern behavior is exhibited for all N and � values beyond

the beginning of the maximum displacement region. Parameter values: DA
e = DB

e ;
CF

A
= CF

B
; qF

AB
= qF

B
; and � = 0.

initial conditions. The latter adjustment for N = ˇi(�), �i = 1 is more
difficult to calculate in advance, so region change was implemented
when �i approached to within some small tolerance of 1. Such
approximations may introduce small errors into the numerical cal-
culation, but the differences between the numerical and analytical
results for species A even at a tolerance of 0.001 were negligible.

4. Results and discussion

4.1. General solution characteristics

Solutions have been obtained for a range of conditions to explore
the effects of the model parameters on the predicted behavior. As
expected, the predicted species A profiles always mirror the corre-
sponding results for a single species [8], while the species B profiles
exhibit a wider variety of behavior, but are always characterized by
a solution development region and a constant-pattern, maximum-
overshoot region. A sample profile for a reference set of parameter
values is shown in Fig. 4.

Fig. 4 shows several clearly defined solution regions: region I is
the entrance region at the forefront of the plot (small N); region II
is the sloping region on the right side of the horizontal maximum;
and region III is the sloping region on the left side of the horizontal
maximum. Point D is the closest vertex of the triangle on top and
indicates the beginning of the constant-pattern region. Beyond this
point, all solutions may be obtained analytically. Additionally, the
flat triangular portion is the maximum overshoot region, indicated
by X̄max

B . The species A profile is not shown, but its breakthrough
coincides with regions I and II described previously.

Cuts taken perpendicular to the � axis along the lines shown
in Fig. 4 indicate the mobile-phase concentration as a function of
dimensionless axial position at a fixed dimensionless time. Cuts
taken perpendicular to the N axis indicate the mobile-phase con-
centration at a fixed axial position as a function of dimensionless
time, i.e., results commonly seen in chromatograms. Fig. 5 shows
the chromatograms for B for a number of cuts at various axial posi-

tions. The development of the constant-pattern region is clearly
illustrated in these results.

The dimensionless model parameters that may be varied are the
ratio of the pore diffusivities of the two species, the ratio of the �i
parameters containing the feed and bound concentrations, and the
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ig. 5. Comparison of normalized mobile-phase concentrations of B as a function
f dimensionless time at different fixed axial positions, under the same simulation
onditions as in the surface plot in Fig. 4. Each successive cut shows the development
f the constant-pattern, maximum-displacement region, which is reached at N = 2.

parameter indicating the fraction of displacement. Fig. 6 illus-
rates the effect of varying the �A/�B ratio. If all other parameters
re held constant, this ratio increases with a decrease in the bind-
ng capacity or an increase in the feed concentration of species B.
ncreasing �A/�B ratios correspond to earlier breakthrough and
maller maximum overshoot values of B, a logical result since
igher feed concentrations and lower binding capacities of B corre-

ate with earlier breakthrough. Earlier breakthrough with respect
o A then results in a wider displacement band and thus a lower

aximum concentration of B.
The effect of varying the diffusivity ratio is shown in Fig. 7. A

ecrease in the ratio results in more diffuse uptake fronts of B,
howing earlier initial breakthrough of B and later achievement
f complete breakthrough, and vice versa. As illustrated clearly in
ig. 7, the diffusivity ratio does not have any impact on the maxi-
um overshoot value achieved by B.
.2. Comparison of model predictions with experiment

Experimental data for binary breakthrough chromatography of
ysozyme and cytochrome c on SP Sepharose FF were obtained for

ig. 6. Comparison of normalized mobile-phase concentrations of B at different
A/�B = (qF

AB
/qF

B
)(CF

B
/CF

A
) ratios, as a function of dimensionless time. Parameter

alues: N = 2; DA
e = DB

e ; and � = 0.
Fig. 7. Comparison of normalized mobile-phase concentrations of B for different dif-
fusivity ratios as a function of dimensionless time. Parameter values: N = 2; �A = �B;
and � = 0.

the flow rates, feed concentrations, and column parameters listed
in Table 2; also shown are sources of the parameter values used in
the simulations. Lysozyme represents species A, the displacer, and
cytochrome c species B, the displaced species [36,37].

Results of binary shrinking core calculations performed in the
non-constant pattern region using the parameter values in Table 2
are compared with experimental data in Fig. 8. Results obtained
using two additional PDE models assuming a solid-film linear driv-
ing force model and a fitted colloidal isotherm [37] are also included
for comparison; these equations were solved by finite differences
[43]. In each case the rate of mass transfer was calculated based on
a lumped mass transfer coefficient estimated using [44]

ki
f = 60Di

eCF
i

d2
pqF

i

(40)

In one case a global driving force was assumed, calculated from the
feed and associated equilibrium concentrations, and in the other a

local driving force was calculated at each mesh point based on local
concentration and equilibrium values.

All the models capture the behavior of species A relatively well;
since species A binds more strongly than and displaces B, this result

Table 2
Parameter values used in calculation of shrinking core solution in Figs. 8 and 9.
Species A is lysozyme and species B is cytochrome c.

Non-constant
pattern (Fig. 8)

Constant pattern
(Fig. 9)

CF
A

(mg/mL) 2.0 1.0

CF
B

(mg/mL) 0.2 0.7

qF
B

(mg/mL) [42] 100 100

qF
AB

(mg/mL) [37] 200 180

qF
BA

(mg/mL) [37] 2.0 2.0

DA
e (cm2/s) [31] 2.7 × 10−7 2.7 × 10−7

DB
e (cm2/s) 2.0 × 10−6 [36], 2.7 × 10−7 2.0 × 10−6 [36], 2.7 × 10−7

ε 0.35 0.37
u (interstitial, cm/h) 485 248, 413, 578
z (cm) 5.00 6.05
dc (cm) 0.3 0.5
dp (�m) 100 100
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Fig. 8. Comparison of experimental (open symbols) and predicted shrinking core
(solid lines) breakthrough curves for binary lysozyme/cytochrome c (LYS/CYC)
breakthrough on SP Sepharose FF at pH 7 (experimental parameters in Table 2).
A comparison is also shown for the case where the CYC diffusivity is taken as equal
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Fig. 9. Comparison of experimental breakthrough curves (open symbols) and cal-
culations using the analytical shrinking-core constant-pattern (solid lines) for the
lysozyme/cytochrome c (LYS/CYC) system on SP Sepharose FF at pH 7 at linear
interstitial velocities of 248 cm/h (a), 413 cm/h (b) and 578 cm/h (c) (experimental
o the LYS diffusivity in the shrinking-core model (dashed line; overlaid by solid
or LYS and part of CYC). Also shown are adaptations of the solid-film linear driving
orce (LDF) model, one using a global driving force based on the feed concentration
nd the other using a local driving force based on the local protein concentration.

s expected. However, poor agreement is observed between the
olid-film linear driving force model and the experimental data for
pecies B. In contrast, excellent agreement is observed between the
xperimental data and the two shrinking-core predicted results,
ithout the use of any adjustable parameters. The comparison of
odel results suggests that uptake proceeds through a displace-
ent mechanism rather than through competitive binding. The

remature emergence of displaced B predicted by the LDF mod-
ls is presumably a result of the lumped description of transport,
hich results in more rapid competitive displacement than for the

hrinking-core model, which allows B displaced within a particle
o migrate toward the center of the particle before being displaced
ater.

One area of uncertainty surrounds the correct value of the pore
iffusivity for CYC, for which a measured value was not found

n the literature. Since CYC and LYS are similar in size and have
imilar free-solution diffusivities [45], their true pore diffusivi-
ies in the same adsorbent should be similar. The higher value
isted in Table 2 was reported by Martin et al. [36] from a regres-
ion of batch uptake data using the shrinking-core model, but the
alue – about 50% higher than that in free solution – suggests
hat the uptake may have included a contribution to transport
y some other mechanism, e.g., surface diffusion [46]. The main
ifference between the predictions using the different diffusiv-

ty values is that higher overshoot values are predicted by use
f the higher CYC diffusivity, resulting from faster particle satu-
ation by CYC and hence the displacement of larger amounts of
YC as LYS uptake proceeds. The higher overshoot values are not
bserved experimentally (Fig. 8), possibly due to inapplicability
f the reported diffusivity value in our experiments and/or addi-
ional contributions of dispersion and other limiting mass transfer
ffects.

A striking feature of the shrinking-core prediction is the sharp-

ess of the edges relative to the experimental curves. For species A,
he result is identical to that of Cooper and Liberman, with the sharp
orner resulting from the shrinking-core assumption itself and the
mission of external mass transfer resistance and axial dispersion
ffects. Inclusion of either or both of these effects would result in
parameters in Table 2). A comparison is shown for the case where the CYC diffusiv-
ity is taken as equal to the LYS diffusivity in the shrinking-core model (dashed line;
overlaid by solid for LYS and part of CYC). Also shown are solid-film linear driving
force predictions (dotted lines).

smoother curves and better qualitative agreement with the form of
the experimental results [7,9].

In the case of species B, a sharp spike is observed, which corre-
lates exactly with the position of the corner in the species A solution.
Since species B is subject to displacement by species A, the effect of
the corner in the A chromatogram is amplified here. Species B has
a reasonably high affinity for the column, but cannot adsorb, and is
in fact being displaced by species A. Once the displacement effect
subsides, the remainder of the protein quickly adsorbs to the col-
umn. Again, it is expected that inclusion of the effects mentioned
above would mitigate the discontinuous behavior and allow even
better agreement with experimental data.

Analytical results of binary shrinking-core calculations per-
formed in the constant-pattern region using the parameter values
in Table 2 are compared with experimental data in Fig. 9. These
results are also compared with predictions of a linear driving force
model using the global driving force model described for Fig. 8.

Both the shrinking core and the linear driving force models
capture the general trends exhibited in the experimental data.
However, the calculated lysozyme results disagree somewhat with
the experimental profiles, exhibiting later breakthrough than seen
in practice. This late breakthrough results in additional discrep-
ancies between experiment and simulation for cytochrome c. The
difference in the breakthrough position for lysozyme reflects a
discrepancy in the capacity, while the difference in slope can be
affected also by transport effects. The discrepancies were seen
also in single-component lysozyme breakthrough and were not
resolved by direct measurement of column porosity, so their ori-
gin is unclear. However, the overall solution structure is correctly
captured.

The difference in behavior observed in Fig. 8 between the
two shrinking-core diffusivity parameters is limited to the non-
constant pattern region, as diffusivity effects on maximum
overshoot values are not observed in the constant pattern region,
where the maximum overshoot is always reached. The higher

reported apparent diffusivity [36] appears to predict CYC uptake
rates better, as illustrated in Fig. 9.

Comparing predictions of the different models reveals that the
LDF model again predicts early displacement of the cytochrome
c, rather than the simultaneous displacement with lysozyme
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inding predicted by the shrinking-core model and validated by
xperimental results. The effects of the LDF prediction of early dis-
lacement appear to be less significant in the constant-pattern
egions (Fig. 9) than in the non-constant pattern regions (Fig. 8),
s the larger volume of the constant-pattern displacement region
ends to mask this error. Thus accounting for displacement effects
hrough the shrinking-core model appears to have the most notice-
ble effect on solution accuracy for non-constant pattern regions.
he superiority of the shrinking-core model in this regard is still
bserved in constant-pattern regions, but its effect on solution
ccuracy is less noticeable. Non-constant pattern regions tend to
e observed for columns of physically relevant dimensions under
onditions of moderate to higher flow rates and relatively low con-
entrations of the displaced species, conditions typical of those for
n overloaded bind-and-elute separation step.

An additional comparison between models that is especially
elevant in the constant-pattern case is simulation time. Constant-
attern regions tend to develop in a longer column over a longer
eriod of time, requiring significant computational power to
chieve a full numerical solution using discretization methods
uch as finite differences. Further, maximum front sharpness is
chieved in this region, resulting in numerical convergence issues.
he shrinking-core solution in this region has the advantage of
eing analytical, producing results of comparable or improved
ccuracy in a fraction of the computational time needed for a purely
umerical solution.

. Conclusions

The single-component shrinking core breakthrough model was
olved for binary breakthrough chromatography for cases where
ne molecular species displaces another, allowing easier achieve-
ent of limited analytical and complete numerical solutions.

ompared with other modeling methods, the analytical considera-
ion of sharp concentration gradients within the particle provides
ignificant advantages in both solution accuracy and efficiency.
nalytical treatment of the column length required for constant-
attern behavior is especially useful, as this has been largely
verlooked or approximated in previous models for binary break-
hrough behavior. Numerical simulation of model results requires
o solution of partial differential equations, and thus numerical
esults are obtained using Matlab’s ode suite; this is a significant
chievement compared with some other binary models accounting
or diffusive intraparticle transport.

Numerical predictions for lysozyme–cytochrome c break-
hrough on SP Sepharose FF based only on isotherm data, effective
iffusivity measurements and characterization of column packing
roperties show excellent agreement with experimental break-
hrough data in the non-constant pattern case. In particular, the
imulation provides much better predictions than solid-film lin-
ar driving force models. Such a favorable comparison suggests
hat displacement rather than competitive binding is occurring. The
hrinking-core model effectively predicts the location and size of
isplacement effects, correlating favorably with experimental data

or both constant and non-constant pattern cases.

Primary limitations of the model include assumptions of near-
ectangular isotherms and pore diffusion, and reasonable neglect
f extra-particle transport resistance. Binding of many proteins on
trong ion exchangers satisfies the particle uptake assumptions,

[
[

[

[
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and extra-particle effects may be modulated by appropriate flow
rate selection. Experimental verification of the shrinking-core
uptake mechanism may be accomplished by confocal microscopy
[31–35].
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